Erzeugung von Silan- und Germaniminen $Me_2E = NR$ (E = Si, Ge) aus Sila- und Germadihydrotriazolen¹)

Nils Wiberg*, Petros Karampatses und Chung-Kyun Kim

Institut für Anorganische Chemie der Universität München, Meiserstraße 1, D-8000 München 2

Eingegangen am 9. Februar 1987

Sila- bzw. Germaethen $Me_2E = C(SiMe_3)_2$ [E = Si, Ge; erzeugt durch Reaktion von BuLi mit Me2EBr-CBr(SiMe3)2 in Et2O] reagieren mit Azidoalkanen und -silanen RN_3 [R = tBu, p-Tol, $tBu_{a}Me_{1-a}Si$, Ph₃Si, (Me_3Si)₂NMe₂E, Me₃SiN₃] bei $-78^{\circ}C$ quantitativ unter [2 + 3]-Cycloaddition, d.h. unter Bildung von Sila- bzw. Germadihydrotriazolen 3 bzw. 4. Letztere zersetzen sich teils unterhalb (E = Si, R = Silyl), teils bei oder oberhalb Raumtemperatur (E = Si, R = Alkyl; E = Ge) nach 1. Reaktionsordnung unter Isomerisierung in Diazomethan-Derivate sowie unter [2 + 3]-Cycloreversion in $(Me_3Si)_2C = N = N$ und Silan-bzw. Germanimine $Me_2E = NR$ (Geschwindigkeitskonstanten: Tab. 1). Die ungesättigten Verbindungen Me2E = NR entstehen als kurzlebige Zwischenprodukte. Thre Stabilisierung erfolgt in der Regel durch Dimerisierung, in Ausnahmefällen durch Reaktion mit den Silan- bzw. Germaniminquellen (R = SiMe₃) oder durch intramolekulare Umlagerungsprozesse [$R = EMe_2N(SiMe_3)_2, SiPh_3$].

Vor einigen Jahren fanden wir mit den "thermischen Cycloreversionen" gemäß Gl. (1 a) und (1 b) einfache Zugänge zum thermolabilen Silanimin 1 ($R = SiMe_3$)²). Die Entdekkung regte dazu an, in entsprechender Weise andere Silanimine (Iminosilane, Silaketimine) 1 und darüber hinaus Germanimine (Iminogermane, Germaketimine) 2 zu erzeugen.

Weitere aufgefundene Möglichkeiten der Erzeugung von Silanund Germaniminen umfassen die Pyrolyse oder Photolyse von Silyl- und Germylaziden R_3EN_3 (E = Si, Ge), die Umsetzung von Germylaziden mit Germylenen GeX₂ sowie die Pyrolyse von MeSi(OMe)₂N(SiMe₃)₂^{3,4}). Wegen der drastischen Darstellungsbedingungen (hohe Temperatur, Photonen, reaktive Partner) entstehen die kurzlebigen Silan- und Germanimine, deren intermediäre Existenz aus Reaktionen mit Abfangreagenzien (Alkohole, Alkoxysilane, (Me₂SiO)₃) gefolgert wurde^{3,4}), neben unerwünschten Produkten. Die oben angesprochenen thermischen Cycloreversionen führen demgegenüber unter vergleichsweise milden Bedingungen (s. unten) zu Silan- und Germaniminen⁵). Die Erzeugung von Silan- und Germaniminen $R_2E = NR$ aus $R_2EX - NLiR$ (E = Si,

Preparation of Silan- and Germanimines $Me_2E = NR$ (E = Si, Ge) from Sila- and Germadihydrotriazoles¹⁾

Sila- or germaethene $Me_2E = C(SiMe_3)_2$ [E = Si, Ge; generated by reaction of BuLi with Me2EBr-CBr(SiMe3)2 in Et2O] quantitatively react with azidoalkanes or -silanes RN_3 [R = tBu, p-Tol, tBunMe3. "Si, Ph3Si, (Me3Si)2NMe2E, Me2SiN3] at -78°C by [2 + 3] cycloaddition to form sila- or germadihydrotriazoles 3 and 4, respectively. The latter decompose partly below (E = Si, R = silyl), partly at or above room temperature (E = Si, R =alkyl; E = Ge) in a first-order reaction by isomerization into diazomethane derivatives as well as by [2 + 3] cycloreversion into $(Me_3Si)_2C = N = N$ and silan- or germanimines $Me_2E = NR$ (rate constants: Table 1). The unsaturated compounds $Me_2E =$ NR are formed as short-lived intermediates. Their stabilization, as a rule, takes place by dimerization and, in exceptional cases, by reaction with the silan- or germanimine sources $(R = SiMe_3)$ or by intramolecular migration processes $[R = EMe_2N(SiMe_3)_2, \dots$ SiPh₃].

Ge; X = elektronegativer Rest) durch "thermische Salz-Eliminierung", eine zur Darstellung von Sila- und Germaethenen $R_2E = CR_2$ aus $R_2EX - CLiR_2$ geeignete Methode^{6,7}, führt nur bei Edukten $R_2EX - NLiR$ mit sperrigen Doppelbindungssubstituenten R problemlos zum Ziel^{5,8,9}.

Da die zur Erzeugung von 1 und 2 nach Gl. (1a) benötigten Vorstufen leichter synthetisierbar sind als die nach Gl. (1b) benötigten Edukte¹⁰, haben wir nur ersteren Darstellungsweg eingehend studiert. Nachfolgend wird infolgedessen zunächst die Synthese von Sila- und Germadihydrotriazolen besprochen.

Synthese und Charakterisierung einiger Sila- und Germadihydrotriazole

Die zur Erzeugung von 1 oder 2 gemäß Gl. (1a) benötigten Siladihydrotriazole 3 oder Germadihydrotriazole 4 entstehen in glatter Reaktion durch [2 + 3]-Cycloaddition von

Aziden RN₃ an Sila- bzw. Germaethen $Me_2E = C(SiMe_3)_2$ (E = Si, Ge). Tropft man dementsprechend zu einer Lösung von $Me_2EBr - CBr(SiMe_3)_2$ und RN₃ in Diethylether bei -78 °C BuLi in Hexan oder Diethylether, so bilden sich (falls R nicht zu sperrig, d.h. nicht tBu₃Si ist¹¹) **3** oder **4** nach Gl. (2) in quantitativer Ausbeute. Die Gesamtreaktion verläuft in den durch Gl. (2a-c) zum Ausdruck gebrachten Teilschritten.

Die Bildung von 3 bzw. 4 aus $Me_2EBr-SiBr(SiMe_3)_2$, BuLi und RN_3 könnte – anders als besprochen – auch über eine Additionsverbindung der nach Gl. (2a) zunächst gebildeten Lithiumverbindung $Me_2EBr-CLi(SiMe_3)_2 = R'Li$ mit dem Azid RN_3 verlaufen, welche ihrerseits unter LiBr-Eliminierung in 3 bzw. 4 überginge:

 $R'Li + N = N = NR \rightarrow \{R'N = N - NRLi\} \rightarrow 3, 4 + LiBr$

Für den wiedergegebenen Reaktionsweg nach Gl. (2b,c) mit zwischenzeitlicher Bildung von Me₂E = C(SiMe₃)₂ sprechen aber fol-

gende Befunde: 1) $Me_2E = C(SiMe_3)_2$, erzeugt durch Cycloreversion aus Silaethen-Quellen, für die - anders als im Falle von Me₂SiBr-CLi(SiMe₃)₂ - keine Möglichkeit zur direkten Reaktion mit RN3 besteht, bilden mit Aziden ebenfalls die Cycloaddukte 3, 4 (vgl. hierzu Lit.^{12,13}). 2) Das mit R'Li = $(Me_3Si)_2(Me_2BrE)CLi$ strukturell vergleichbare Lithiumorganyl (Me₃Si)₃CLi addiert sich nicht an das Azid Me₃SiN₃; statt dessen erfolgt in Et₂O bei - 30 °C Azidsubstitution: $(Me_3Si)_3CLi + Me_3SiN_3 \rightarrow (Me_3Si)_4C + LiN_3$. Auch setzen sich die hinsichtlich einer MF-Abspaltung bei Raumtemperatur stabilen Silaethen-Quellen $Me_2SiF - CM(SiMe_3)_2$ (M = Na, K) mit dem Azid tBu₃SiN₃ in Et₂O bei Raumtemperatur überhaupt nicht um (Entsprechendes gilt für (Me₃Si)₃CLi). Folglich ist es ausgeschlossen, daß die Sila- und Germaethen-Quellen $Me_2EBr - CLi(SiMe_3)_2 = R'Li$, welche in Et_2O bereits bei -78 °C rasch LiBr eliminieren^{6,7)}, mit anwesenden Aziden Addukte des Typs R'N = N - NRLi bilden. Andererseits entstehen aus Aziden und $Me_2E = C(SiMe_3)_2$ sehr leicht [2 + 3]-Cycloaddukte¹⁴, so daß die Sila- und Germaethene - anders als deren Quellen

Tab. 1. Kenndaten und Thermolysekinetiken einiger Sila- und Germadihydrotriazole 3 und 4

	Me ₂	2E						·		
	RN N		Schmp. ^{a)}	1LI NIMD G.d)			Therr	Thermolysekinetik ^{c)}		
Nr.	E	`N≠ R	(Zers. [♭]) [°C]	Me₃Si	Me ₂ E	R	Т [°С]	10 ⁴ k [s ⁻¹]	τ _{1/2} [min]	
<u>-</u> 3a	Si	CMe ₃	76 (> 50)°	E 0.121 P 0.157	0.403	1.40	B 100		> 30 ^{e)}	
3b ¹⁵⁾		SiMe ₃	$(> 30)^{+}$ 15 (-14)	E 0.118 T 0.119	0.264 0.351 0.266	0.297 0.189	E -12	3.40	34 ¹⁾	
3c		$SiMe_2tBu$	12 (-17)	E 0.122 T 0.116	0.323 0.206	0.226/0.980 0.192/1.02	E -15 T -15	4.62 5.50	25 21	
3d		SiMetBu ₂	4 (-20)	E 0.143 T 0.147	0.356 0.244	0.187/1.04 0.244/1.10	E -15 T -15	7.22 9.36	16 12	
3e		SitBu ₃	$(<-30)^{g}$						·	
3f		SiPh ₃	(<-50)	E 0.174	-0.109	m	E - 65	6.8	17	
3g		$S_1Me_2R^{2m}$	-10	E 0.136 T 0.144	0.367	0.388/0.243	E - 15 T - 15	0.14	8	
3h	·	<i>p</i> -Tol	67 (>45)	E 0.163 B 0.155	0.487 0.302	2.30/m 2.10/m	1 13	0.25		
4a ¹³⁾	Ge	CMe ₃	86 (90)	E 0.092 B 0.152	0.640 0.443	1.37 1.34	E 100 B 100	5.37 4.42	21.5 26.2	
4b ¹³⁾		SiMe ₃	126 (80)	E 0.087 B 0.121	0.564 0.403	0.269 0.298	E 70 B 70	4.85 6.36	23.8 28.1	
4c ¹³⁾		SiMe ₂ tBu	74 (50)	E 0.120 B 0.117	0.472 0.418	0.191/1.04 0.043/1.07	E 70 B 70	7.58 7.20	15.2 16.0	
4d ¹³⁾		SiMetBu ₂	115 (60)	E 0.083 B 0.136	0.593 0.450	0.113/1.05 0.084/1.14	E 70 B 70	4.95 3.13	23.3 23.0	
4e ¹³		SitBu ₃	(-10)	E 0.140	0.688	1.19	E 0	3.73	30.9	
4f		S ₁ Ph ₃	71 (10)	E 0.140 B 0.173	0.127 0.124	m m				
4g		GeMe ₂ R ^{/h)}	90 (75)	E 0.091 B 0.141	0.584 0.474	0.663/0.210 0.628/0.289	E 80	1.60	72	
4h		SiMe ₂ R ^{^h}	86 (50)	E 0.102 B 0.124	0.592 0.456	0.360/0.238 0.407/0.323	E 60 B 50	11.93 1.82	9.7 63.5	
4 i		$SiMe_2N_3$	(< R T)	E 0.090	0.700	0.138				
4k		SiMe ₂ (s. Text)	81 (RT)	E 0.086 B 0.136	0.498 0.597	0.620 0.548	,			

^{a)} Die Verbindungen schmelzen mit Ausnahme von **4a** unter Zersetzung. – ^{b)} Die Zersetzungstemperaturen beziehen sich auf verdünnte etherische Lösungen, $\tau_{1/2}$ ca. 1 h. – ^{c)} Solvenzien: $E = Et_2O$, $B = C_6H_6$, $T = C_6H_5CH_3$. – ^{d)} ¹H-NMR-Messungen von **3b, c, d, g** bei –14, von **3f** bei –65°C; übrige Messungen bei Raumtemperatur. – Singuletts, wenn nicht anders vermerkt (m = Aromaten-Multiplett). – ^{e)} Vollständige Zersetzung in 15 h bei 100°C. – ^{f)} Aktivierungsparameter in Et₂O: $E_a = 158$ kJ/mol; $\Delta H^+ = 156$ kJ/mol; ΔG^+ (–14°C) = 80 kJ/mol; ΔS^+ (–14°C) = 295 J/K · mol. Geschwindigkeitskonstanten k (–14°C) = 1.60 × 10⁻⁴ s⁻¹ ($\tau_{1/2} = 72$ min), k (–17°C) = 0.72 × 10⁻⁴ s⁻¹ ($\tau_{1/2} = 161$ min). – ^{g)} Die Bildung von **3e** aus Me₂Si = C(SiMe₃)₂ und tBu₃SiN₃ erfolgt bei –30°C langsamer als der Zerfall von **3e**. – ^{h)} R' = N(SiMe₃)₂.

 $Me_2EBr - CLi(SiMe_3)_2 - trotz ihrer Kurzlebigkeit als Azid-Reak$ tanden in Frage kommen. 3) Die Sila- und Germaethen-Quellen $<math>Me_2EX - CLi(SiMe_3)_2$ (E = Si, X = F und E = Ge, X = OMe) zerfallen in Anwesenheit von tBu_2MeSiN_3 (Lösungsmittel Et₂O) vergleichbar rasch wie in Anwesenheit von 2,3-Dimethyl-1,3-butadien als Sila- bzw. Germaethen-Fänger^{6,13}.

In Tab. 1 sind die von uns synthetisierten Sila- und Germadihydrotriazole 3 und 4 zusammen mit einigen Verbindungskenndaten aufgeführt. Es handelt sich um farblose¹⁶, kristalline, in organischen Medien lösliche Verbindungen, die bei Raumtemperatur teils instabil (Siladihydrotriazole mit Ausnahme von 3a und 3h), teils metastabil sind (Germadihydrotriazole mit Ausnahme von 4e, f, i, k).

Für die in Gl. (2) sowie Tab. 1 wiedergegebene Konstitution der Sila- und Germadihydrotriazole und gegen die konstitutionsisomere Form mit R am Nachbarstickstoffatom der C(SiMe₃)₂-Gruppe sprechen 1) der Darstellungsweg der Verbindungen (in RN = N = N ist das α -N-Atom basisch¹⁷) und reagiert demzufolge mit dem ungesättigten Atom E in Me₂E = C(SiMe₃)₂, welchem saure Eigenschaften zukommen¹⁸), 2) die Verbindungsfarbe (farblos; die isomeren Sila- und Germadihydrotriazole sollten gelb sein¹⁹), 3) die Art der Produkte der Thermolyse von **3**, **4** (s. unten).

Thermolyse von Sila- und Germadihydrotriazolen

Die nach Gl. (2) synthetisierten Sila- und Germadihydrotriazole 3 bzw. 4 zersetzen sich thermisch bei den in Tab. 1 wiedergegebenen Temperaturen unter Isomerisierung (Gl. 3a) und/oder unter [2 + 3]-Cycloreversion (Gl. 3b) (bezüglich der intermediären Existenz von 1, 2 vgl. nachfolgendes Unterkapitel). Die Isomerisierung führt zu gelbgrünen Diazomethanderivaten 5 bzw. 6, die [2 + 3]-Cycloreversion zu gelbgrünem Bis(trimethylsilyl)diazomethan (Me₃Si)₂CN₂ und kurzlebigen Silan- bzw. Germaniminen 1 bzw. 2, welche sich ihrerseits stabilisieren, und zwar meist gemäß Gl. (3c) durch Bildung von farblosen Dimeren 7 bzw. 8 [die Prozentangaben in Gl. (3) beziehen sich auf Thermolysen von 3 in Et₂O und von 4 in C₆H₆ bei $< -10^{\circ}$ C (3b-g; 4e), um Raumtemp. (4i,f) bzw. $> 50 \degree C$ (3a,h; 4a-d,g,h,i; vgl. Exp. Teil).

Der prozentuale Anteil der Isomerisierung und [2 + 3]-Cycloreversion an der Gesamtthermolyse hängt etwas vom Reaktionsmedium ab (z. B. Cycloreversionsausbeute im Falle der Thermolyse von **3b** in Diethylether 50%, in Tetrahydrofuran 65% ^{19a}), stärker von der Thermolysetemperatur (wachsende Cycloreversionsausbeute mit steigender Temperatur; z. B. im Falle von **3b** 50% bei -10° C, um 85% bei 100°C, im Falle von **3f** 25% um -70° C, 85% bei 100°C). Entscheidend beeinflußt die Gruppe R und das Atom E in **3** bzw. **4** den Thermolyseverlauf der Sila- und Germadihydrotriazole.

Erwartungsgemäß sinkt die Tendenz der Siladihydrotriazole zur Isomerisierung unter Silylgruppenwanderung nach Gl. (3a) in Richtung 3b > 3c > 3g > 3d, e, also mit wachsender Sperrigkeit von R. 3a sollte hiernach weniger leicht isomerisieren als 3b ($R = Me_3C$ ist sperriger als $R = Me_3Si$), und in der Tat thermolysiert 3a langsamer als 3b (Tab. 1). Die Tendenz der Germadihydrotriazole zur Isomerisierung ist insgesamt kleiner als die der Siladihydrotriazole, was möglicherweise damit zusammenhängt, daß der Weg der Silylgruppen-Umlagerung in 4 länger ist als in 3 (der Atomradius von Ge ist etwas größer als der von Si). Die Ursachen der unterschiedlichen Tendenzen von 3 bzw. 4 zur [2 + 3]-Cycloreversion (z. B. die geringe Tendenz von 3a, 4a zur Cycloreversion) sind noch unklar (vgl. hierzu auch nachfolgendes Unterkapitel).

Die Stabilisierung der durch Thermolyse von **3b**, **3g**, **4b**, **4g** und **4h** nach Gl. (3b) erzeugten Imine $Me_2E = NR$ erfolgt nicht ausschließlich durch Dimerisierung (Gl. 3c). So bildet etwa das Imin $Me_2Ge = N - SiMe_2N(SiMe_3)_2$ (aus **4h**) neben dem Dimeren **8h** zusätzlich das Umlagerungsprodukt **9** durch intramolekulare Insertion der Gruppe $\supset Ge = N - in$ eine NSi-Bindung der Gruppe $N(SiMe_3)_2$ (vgl. Gl. 4). Der prozentuale Anteil der Insertion steigt hierbei auf Kosten des Dimerisierungsanteils mit wachsender Basizität des Solvens und beträgt in Benzol 0%, in Diethylether ca. 50%, in Tetrahydrofuran 100%. Entsprechendes gilt offensichtlich für die aus **3g** und **4g** erzeugbaren Imine $Me_2E = N - EMe_2N(SiMe_3)_2$ (E = Si, Ge).

Die Solvensabhängigkeit der Insertions- und Dimerisierungstendenz von Me₂E=N-E'Me₂N(SiMe₃)₂ läßt sich wie folgt erklären: Ungesättigte Silicium- und Germaniumverbindungen E=Y bilden mit Donatoren D Addukte D $\rightarrow \stackrel{l}{=}=Y$ (vgl. Lit.^{18,20,26}). Infolgedessen sinkt mit wachsender Solvensbasizität (C₆H₆ < Et₂O < THF) die Gleichgewichtskonzentration an freiem Imin Me₂E=N-E'Me₂N(SiMe₃)₂, was eine Erhöhung der Halbwertszeit der Dimerisierung, einer Reaktion 2. Ordnung, bedingt, während die Halbwertszeit der intramolekularen Insertion, einer Reaktion 1. Ordnung, hiervon unbeeinflußt bleibt.

Das durch Thermolyse von **4b** erzeugbare Imin $Me_2Ge = NSiMe_3$ stabilisiert sich außer durch Dimerisie-

rung (Bildung von 8b) zusätzlich durch einfache oder vielfache Insertion des Germanimins in die NSi-Bindung der NSiMe₃-Gruppe von 4b unter Bildung der in organischen Solvenzien wie Pentan, Benzol, Diethylether löslichen Verbindung 4g und unlöslichen Verbindungen 10 (Gl. 5)^{21,22)}. Die Germadihydrotriazole 10 (n = variabel) können ihrerseits thermisch unter Eliminierung von (Me₃Si)₂CN₂ über Imine $Me_2Ge = N(GeMe_2NSiMe_3)_nSiMe_3$ in unlösliches "polymeres" (Me2GeNSiMe3)m übergehen (mögliche Konstitution u.a. 11 (vgl. Gl. 4). Der prozentuale Anteil der Dimerisierung (Gl. 3c) steigt im Falle der 4b-Thermolyse auf Kosten des Anteils der Insertion von $Me_2Ge = NSiMe_3$ (Gl. 5) mit wachsender Basizität des Solvens und beträgt in Pentan und Benzol 0%, in Diethylether 50%, in Tetrahydrofuran 84%. Das Ausbeuteverhältnis von 9g zu 10 bleibt demgegenüber in Lösungsmitteln unterschiedlicher Basizität näherungsweise unverändert (Molverhältnis 4g: $\frac{1}{n}$ 10 ca. 1).

Die Solvensabhängigkeit der Insertions- und Dimerisationstendenz von $Me_2Ge = NSiMe_3$ (aus 4b) läßt sich wie folgt erklären: Als Donatoren D für $Me_2Ge = NSiMe_3$ (Bildung von Addukten des Typs $D \rightarrow Me_2Ge = NSiMe_3$, s. oben) können im vorliegenden Fall 4b-Moleküle (entsprechendes gilt für 4g-Moleküle) mit Lösungsmittelmolekülen konkurrieren, wobei sich 4b-Addukte (4g-Addukte) in Insertionsprodukte (4g, 10) umlagern, während die Solvensaddukte unter Abspaltung von Solvensmolekülen in Dimere von $Me_2Ge = NSiMe_3$ (8b) übergehen.

Auch das durch Thermolyse von **3b** erzeugbare Silanimin $Me_2Si = NSiMe_3$ stabilisiert sich nicht ausschließlich durch Dimerisierung (Bildung von **7b**). Der prozentuale Anteil der Dimerisierung des Imins (Gl. 3c) steigt – ähnlich wie im Falle des Germanimins $Me_2Ge = NSiMe_3$ (aus **4b**) – mit zunehmender Basizität des Solvens und beträgt im Falle der **3b**-Thermolyse um $-10^{\circ}C$ in Diethylether 54%, in Tetrahydrofuran 100%. Somit verschwindet das nicht durch Dimerisierung verbrauchte Silanimin möglicherweise ebenfalls im Sinne von Gl. (5) durch mehrfache Insertion von $Me_2Si = NSiMe_3$ in die NSi-Bindung der NSiMe_3-Gruppe in **3b** auf dem Wege über **3g** (\cong **4g** mit Si anstelle von Ge). Allerdings kommt es hierbei nicht zur Bildung von unlöslichen "Polymerisaten"²²); auch läßt sich **3g** im Thermolysat nicht nachweisen²¹), so daß andere "Polymerisationsreaktionen" von $Me_2Si = NSiMe_3$ (aus **3b**) nicht auszuschließen sind.

Die durch Thermolyse von 3c - e bzw. 4c - e erhältlichen Silan- und Germanimine $Me_2E = NR$ ($R = SiMe_2tBu$, Si $MetBu_2$, Si tBu_3) stabilisieren sich ausschließlich durch Dimerisierung. Offensichtlich können hier die Imininsertionen in die NSi-Bindung der NR-Gruppen der Sila- und Germadihydrotriazole aus sterischen Gründen nicht mehr mit der Imindimerisierung konkurrieren. Überraschenderweise stabilisiert sich aber auch das mit $Me_2Ge = NSiMe_3$ vergleichbar sperrige Germanimin $Me_2Ge = NSiMe_2N_3$ (aus 4i) ausschließlich unter Dimerisierung (Bildung von 8i, Gl. 3c)²³⁾.

Das Germadihydrotriazol **4i** war ursprünglich mit dem Ziel synthetisiert worden, durch dessen Thermolyse auf dem Wege über das Germanimin Me₂Ge=NSiMe₂N₃ einen Bicyclus **12** zu gewinnen (intramolekulare [2 + 3]-Cycloaddition von \supset Ge=N- an -N=N=N im Sinne von Gl. 2c). Eine Reaktion gemäß Gl. (6) erfolgt jedoch nicht.

Im Falle der Thermolyse des Bis(germadihydrotriazolyl)silans **4k** könnte durch zweifache [2 + 3]-Cycloreversion die doppelt ungesättigte Verbindung Me₂Ge = N – SiMe₂-N=GeMe₂ als kurzlebige Zwischenstufe entstehen. Tatsächlich dimerisiert sich aber bereits das nach einfacher [2 + 3]-Cycloreversion aus **4k** folgende Germanimin unter Bildung von **8k** (Gl. 7, n = 1). Letztere Verbindung verwandelt sich dann durch vielfach wiederholte [2 + 3]-Cycloreversion und Dimerisation intermediär gebildeter Germanimine thermisch weiter in **8l** (Gl. 7, n = groß).

Besonderheiten weisen schließlich auch die Thermolysen von 3f und 4f auf: Das durch [2 + 3]-Cycloreversion aus 4f erzeugbare Germanimin Me₂Ge = NSiPh₃ dimerisiert sich nicht ausschließlich gemäß Gl. (8b), sondern lagert sich darüber hinaus nach Gl. (8a) in das Silanimin Ph₂Si = NGeMe₂Ph um, welches seinerseits mit dem ursprünglichen Germanimin (Gl. 8c) oder mit sich selbst (Gl. 8d) zu [2 + 2]-Cycloaddukten reagiert. Der prozentuale Anteil der Umlagerung (Gl. 8a) steigt hierbei auf Kosten des Anteils der Eigendimerisierung von $Me_2Ge = NSiPh_3$ (Gl. 8b) mit zunehmender Basizität des Solvens sowie abnehmender Reaktionstemperatur und beträgt bei 5°C in Benzol 44% (etwa gleiche Ausbeuten an 8m und 8n), in Diethylether oder Tetrahydrofuran 100% (ausschließliche Bildung von 8n) und bei 25°C in Benzol 8%, in Pentan 0%. Das durch Thermolyse von 3f gebildete Silanimin $Me_2Si = NSiPh_3$ unterliegt wohl ähnlichen Prozessen wie das Germanimin $Me_2Ge = NSiPh_3$ (Gl. 8); die Verhältnisse sind hier im einzelnen noch ungeklärt.

Die Phenylgruppen-Umlagerung gemäß Gl. (8a) kann u.a. den Grund haben, daß im vorliegenden Fall die SiN-Doppelbindung stabiler ist als die GeN-Doppelbindung oder daß eine E = N-Doppelbindung mit E-gebundenen Phenylgruppen stabiler ist als eine solche mit E-gebundenen Methylgruppen oder daß Donatoraddukte von Silaniminen stabiler sind als Donatoraddukte von Germaniminen. (Bezüglich Umlagerungen des Typs $E = Y - E'R \langle \neq$ $RE - Y = E' \langle mit E, E' = Si, Ge vgl. auch Lit.⁵.)$

Zur intermediären Bildung von $Me_2E = NR$ bei der Thermolyse von Sila- und Germadihydrotriazolen

Die Bildung von 7 bzw. 8 als Folge der Thermolyse von Sila- bzw. Germadihydrotriazolen 3 bzw. 4 (Gl. 3) läßt sich – wie besprochen – zwanglos über zwischenzeitlich entstehende Silan- bzw. Germanimine 1b-h bzw. 2b-k deuten.

R Si Ge			E=N-R			R	Si	Ge
SiMe ₃	16	2b	Me^			SiPh ₃	Ħ	2f
SiMe ₂ tBu	1c	2c	R	Si	Ge	<i>p-</i> Tol	1h	_
SiMetBu ₂	1d	2 d	SiMe ₂ N(SiMe ₃) ₂	1g	2h	SiMe ₂ N ₃	-	2 i
SitBu ₃	l 1e	2e	GeMe ₂ N(SiMe ₃) ₂	-	2g	SiMe₂ R″	-	2k
						(R″ s	. Text	.)

Für den postulierten Reaktionsmechanismus (intermediäre Bildung von 1, 2) spricht, daß die Thermolysen von 3 bzw. 4 Geschwindigkeitsgesetzen 1. Reaktionsordnung folgen (Geschwindigkeitskonstanten k und Halbwertszeiten $\tau_{1/2}$ vgl. Tab. 1). Somit entstehen also die – aus zwei Silan- bzw. Germaniminen 1 bzw. 2 zusammengesetzten – Verbindungen 7 bzw. 8 keineswegs durch bimolekulare Reaktionen der Sila- bzw. Germadihydrotriazole²⁴.

Für die intermediäre Existenz von 1 und 2 sprechen darüber hinaus *Abfangversuche*, über die in weiteren Veröffentlichungen^{25,26)} eingehend berichtet wird (z. B. bilden sich bei Thermolysen von 3b-e (Tab. 1) in Anwesenheit von NR₃ Aminaddukte R₃'N · Me₂Si = NR der Silanimine 1b-e). Hier sei nur auf die Umsetzung mit Trimethylsilylazid als Fänger für 1b eingegangen: Thermolysiert man 3b bzw. 13 in Anwesenheit von Me_3SiN_3 , so entstehen unter Abspaltung von $(Me_3Si)_2C = N = N$ bzw. $(Me_3Si)_2C =$ NSi Me_3 die Verbindungen 14 und 15 (Gl. 9), deren Bildung zwanglos mit dem intermediären Auftreten des Silanimins 1b (Gl. 9a bzw. 9b) und dessen Weiterreaktion mit Me_3SiN_3 unter Insertion in die SiN-Bindung (Gl. 9c) und [2 + 3]-Cycloaddition an die Azidgruppe (Gl. 9d) interpretiert werden kann.

Es wurde außerdem gefunden, daß die Ausbeute an 15 mit steigender Reaktionstemperatur auf Kosten der Ausbeute an 14 anwächst, wobei das Ausbeuteverhältnis der Konkurrenzabfangprodukte 14 und 15 (100/0% bei -10 °C, 80/20% bei 80 °C)²⁵⁻²⁷⁾ unabhängig davon ist, ob 3b oder 13 mit Me₃SiN₃ umgesetzt wird. Letzteres Ergebnis spricht für die Bildung ein und derselben Zwischenstufe, nämlich 1b, in beiden Reaktionsfällen.

Wir danken der Deutschen Forschungsgemeinschaft für die Förderung der Untersuchungen mit Personal- und Sachmitteln.

Experimenteller Teil

Alle Untersuchungen wurden unter Ausschluß von Wasser und Luft durchgeführt. Nach Literaturvorschriften wurden dargestellt: $Me_2SiX - CBr(SiMe_3)_2$ [X = F, Br; hieraus $Me_2SiX - CLi(SiMe_3)_2$]^{6,28)}, $Me_2GeX - CBr(SiMe_3)_2$ [X = F, Br; hieraus $Me_2GeX - CLi(SiMe_3)_2$]⁷⁾, $tBuN_3^{29}$, $Me_3SiN_3^{30}$, $tBuMe_2SiN_3^{31}$, $tBu_2MeSiN_3^{13}$, $tBu_3SiN_3^{32}$, $Ph_3SiN_3^{30}$, $(Me_3Si)_2NMe_2ECl$ (E = Si, Ge; hieraus $(Me_3Si)_2NMe_2EN_3)^{30,33}$, $p-TolN_3^{34}$, $Me_2Si(N_3)_2^{35}$, $(Me_3Si)_3CLi^{36}$, tBu_3SiM (M = Na, K)³⁷³, 13¹⁵.

¹H-NMR-Spektren: Jeol FX 90 Q, internes TMS. – Molekülmassen sowie Zusammensetzungen der isolierten Verbindungen wurden anhand der M⁺-Peaks sowie deren Isotopenmuster massenspektrometrisch (Varian CH 7) überprüft. – UV-Spektren: Zeiss DMR 10.

Darstellung von 3, 4

a) 3a-d, f-h; 4a-d, f-k: Zu einer auf -78 °C gekühlten Lösung von 4.0 mmol Me₂EBr-CBr(SiMe₃)₂ (E = Si, Ge) und 4.1 mmol tBuN₃, Me₃SiN₃, tBuMe₂SiN₃, tBu₂MeSiN₃, Ph₃SiN₃, (Me₃Si)₂NMe₂SiN₃, (Me₃Si)₂NMe₂GeN₃, p-TolN₃, Me₂Si(N₃)₂ bzw. 2.1 mmol Me₂Si(N₃)₂ in 50 ml Et₂O werden 4.0 mmol BuLi in 20 ml Hexan oder Et₂O getropft. Laut ¹H-NMR-Spektren quantitative Bildung von 3 bzw. 4. Man kondensiert von den Reaktionslösungen das Solvens im Hochvak. bei Raumtemp. (Darstellung von 3a, 3h, 4a-d,g,h,k), bei -40 °C (3b-d, 3g, 4f, 4i) bzw. bei -78 °C (3f) ab, gibt zu den farblosen Rückständen bei -78°C 40 ml Pentan und trennt die Pentanlösungen bei - 78°C vom unlöslichen LiBr durch Dekantieren oder Abfiltrieren. Nach Einengen der auf -78°C gekühlten Lösungen auf ca. 1/3 ihres Volumens bilden sich farblose Kristalle von 3 bzw. 4 folgender Verbindungen mit 70-80% Ausbeute: 3-tert-Butyl-4,4-dimethyl-... (3a, 4a), 4,4-Dimethyl-3-(trimethylsilyl)-... (3b, 4b), 3-(tert-Butyldimethylsilyl)-4,4-dimethyl-... (3c, 4c), 3-(Di-tert-butylmethylsilyl)-4,4-dimethyl-... (3d, 4d), 4,4-Dimethyl-3-(triphenylsilyl)-... (3f, 4f), 3-{/Bis(trimethylsilyl)amino /dimethylsilyl -4,4-dimethyl-... (3g, 4g), 4,4-Dimethyl-3-p-tolyl-... (3h), 3-{/Bis(trimethylsilyl)amino/dimethylgermyl}-4,4-dimethyl-... (4h), 3-(Azidodimethylsilyl)-4,4-dimethyl-... (4i) -5,5-bis(trimethylsilyl)-1,2,3-triaza-4-sila- bzw, -4-germa-1cyclopenten (3 bzw. 4) sowie Bis/4,4-dimethyl-5,5-bis(trimethylsilyl)-1,2,3-triaza-4-germa-1-cyclopenten-3-yl/dimethylsilan (4k). -Charakterisierung: Tab. 1; Analysen der thermostabileren Verbindungen: Tab. 2. Weitere Charakterisierung der Verbindungen 3 bzw. 4 durch Identifizierung der Thermolyseprodukte (s. u.).

b) 3e, 4e: 1) Tropft man zu Lösungen von 0.60 mmol $Me_2EBr-CBr(SiMe_3)_2$ (E = Si, Ge) und 0.60 mmol tBu_3SiN_3 in 10

Tab. 2. Analysenwerte (Molekülmassen massenspektrometrisch belegt)

Nr.	Summenformel	Mr	M_r Ber.			Gef.			
			С	н	'n	C	н	N	
3a	C ₁₃ H ₃₃ N ₃ Si ₃	315.7	49.46	10.54	13.31	46.68	9.98	13.32	
3h	C ₁₆ H ₃₁ N3 ^{Si} 3	349.7	54.95	8.93	12.02	52.24	8.85	12.09	
4a	C ₁₃ H ₃₃ GeN ₃ Si ₂	360.2	43.35	9.24	12.85	42.82	B.90	11.67	
4b	C12 ^H 33 ^{GeN} 3 ^{Si} 3	376.3	38.31	8.84	11.16	38.91	8.41	11.05	
₫ç	C ₁₅ H ₃₉ GeN ₃ Si ₃	418.4	43.06	9.40	10.04	42.56	9.42	9.66	
4d	C18 ^H 45 ^{GeN} 3 ^{Si} 3	460.5	46.94	9.86	9.12	47.46	9.92	8.97	
4f	C ₂₇ H ₃₉ GeN ₃ Si ₃	463.5	57.65	6.99	7.47	55.98	6.98	7.45	
19	^C 17 ^H 48 ^{Ge} 2 ^N 4 ^{Si} 4	521,7	39.14	9.28	10.74	38.84	9.77	10.43	
₫ħ	C ₁₇ H48 ^{GeN4Si5}	566.2	36.07	8.55	9.90	34.77	8.40	9.30	
45	C ₂₀ H ₅₄ Ge ₂ N6 ^{Si} 5	664.4	36.16	8.20	12.65	35.35	8.17	11.49	
5a	C ₁₃ H ₃₃ N ₃ Si ₃	315.7	49.46	10.54	13.31	46.68	9.98	13.32	
şč	^C 15 ^H 39 ^N 3 ^{Si} 4	373.8	48.19	10.51	11.24	50.85	11.06	11.43	
<u>7</u> c	^C 16 ^H 42 ^N 2 ^{Si} 4	374.9	51.26	11.29	7.47	53.16	11.52	7.62	
<u>7</u> ₫	C22 ^H 54 ^N 2 ^{Si} 4	459.0	57.56	11.86	6.10	60.92	12.12	6.30	
Ş₫	C ₂₇ H ₃₉ N ₃ Si ₄	518.0	62.63	7,59	8.11	63.06	7.19	8.07	
<u>6a</u>	C ₁₃ H ₃₃ GeN ₃ Si ₂	360.2	43.35	9.24	12.05	43.36	9.18	11.17	
₿þ	^C 10 ^H 30 ^{Ge} 2 ^N 2 ^{Si} 2	379.7	31.65	7.97	7.38	31.35	7.80	7.25	
11	[C5H15GeNSi]m	[189.9] _m	31.65	7.97	7.38	31.48	7.87	7.05	
8c	^C 16 ^{II} 42 ^{Ge} 2 ^N 2 ^{Si} 2	463.9	41.43	9.13	6.04	39.80	8.44	5.55	
₿₫	C ₂₂ H ₅₄ Ge ₂ N ₂ Si ₂	548.1	48.41	9.93	5,11	47.46	9.80	1.42	
₿Ĕ	C40 ^H 42 ^{Ge} 2 ^N 2 ^{Si} 2	752.2	63.87	5.63	3.72	62.32	5.49	4.28	
₿ņ	^C 40 ^H 42 ^{Ge} 2 ^N 2 ^{Si} 2	752.2	63.87	5.63	3.72	61.00	5.36	-	
ទីឆ្	C ₂₀ H ₆₀ Ge ₂ N4 ^{Si} 6	670.5	35.83	9.03	8.36	33.24	8.54	7.32	
2	C10H30GeN2Si3	335.2	35.83	9.03	8.36	35.00	8.76	-	
∑b	$c_{16}^{H}_{31}^{N}_{3}^{Si}_{3}$	349.7	54.95	8.94	12.02	53.98	8.53	12.83	
₿ķ	C26 ^H 72 ^{Ge} 4 ^N 8 ^{Si} 6	955.4	32.67	7.59	11.72	30.66	7.52	-	

ml Et₂O bei -78°C 0.60 mmol BuLi in 0.4 ml Hexan, so bilden sich - laut ¹H-NMR-Spektren - die Dimeren [-Me₂E- $C(SiMe_3)_2 -]_2$ des Sila- und Germaethens $Me_2E = C(SiMe_3)_2$ neben den Substitutionsprodukten Me₂EBu-CBr(SiMe₃)₂ von Me₂EBr-CBr(SiMe₃)₂ (Charakterisierung durch Vergleich mit authentischen Proben^{7,28}). 2) Beim Zutropfen von 0.60 mmol BuLi/Hexan zu 0.60 mmol Me₂SiBr - CBr(SiMe₃)₂ und 0.60 mmol tBu₃SiN₃ in Et₂O bei -30° C entsteht zusätzlich das [2 + 3]-Cycloaddukt von $Me_2Si = NSitBu_3$ und tBu_3SiN_3 in ca. 35proz. Ausbeute (Charakterisierung durch Vergleich mit authentischer Probe²⁵) neben einem unbekannten Produkt [möglicherweise [2 + 2]-Cycloaddukt von $Me_2Si = NSitBu_3$ und $Me_2Si = C(SiMe_3)_2$ in ca. 20proz. Ausbeute $[^{1}$ H-NMR (Et₂O): $\delta = 0.20$ (s, 2 SiMe₃), 0.65 (s, 2 SiMe₂), verdeckt (SitBu₃)]. – Bezüglich der intermediären Bildung von 4,4-Dimethyl-3-(tri-tert-butylsilyl)-5,5-bis(trimethylsilyl)-1,2,3-triaza-4-sila-1-cyclopenten (3e) im Zuge letzterer Reaktion vgl. Lit.¹¹, bezüglich der Reaktion von BuLi/Me₂GeBr – CBr(SiMe₃)₂/ tBu_3SiN_3 und der Bildung von 4,4-Dimethyl-3-(tri-tert-butylsilyl)-5,5-bis(trimethylsilyl)-1,2,3-triaza-4-germa-1-cyclopenten (4e) vgl. Lit.^{11,13)}.

Umsetzung von $(Me_3Si)_3CLi$ bzw. $(Me_3Si)_2(Me_2FSi)CM$ (M = Na, K) mit Aziden

a) Beim Erwärmen einer auf -78 °C. gekühlten Mischung von 0.20 mmol (Me₃Si)₃CLi und 0.40 mmol Me₃SiN₃ in Et₂O beobachtet man ab ca. -30 °C die Bildung eines Niederschlags (LiN₃). Laut ¹H-NMR-Spektren entsteht quantitativ (Me₃Si)₄C (Charakterisierung durch Vergleich mit authentischer Probe³⁶). – Keine Reaktion liefert (Me₃Si)₃CLi in Et₂O bei Raumtemp. mit *t*Bu₃SiN₃.

b) Zu einer auf -78 °C gekühlten Lösung von 2.0 mmol tBu_3SiK in 20 ml Heptan werden 2.0 mmol Me₂SiF – CBr(SiMe₃)₂ in 5 ml Pentan getropft. Es bildet sich ein Niederschlag, der nach Erwärmen des Reaktionsgemischs auf Raumtemp. abfiltriert wird. Die Lösung enthält – laut ¹H-NMR – ausschließlich tBu_3SiBr (Charakterisierung durch Vergleich mit authentischer Probe³²); der pentanunlösliche, aber etherlösliche Rückstand besteht aus Me₂SiF – CK(SiMe₃)₂ [¹H-NMR (Et₂O): $\delta = 0.011$ (breit, 2 SiMe₃), 0.147 (d, $J_{HF} = 6.5$ Hz, SiMe₂); Charakterisierung durch Überführung in Me₂SiF – CBr(SiMe₃)₂²⁸ mit Br₂ in Et₂O bei – 78 °C].

Das auf dem Wege Me₂SiF-CBr(SiMe₃)₂ + $tBu_3SiK \rightarrow Me_2SiF-CK(SiMe_3)_2 + tBu_3SiBr quantitativ gewinnbare, bei$ $Raumtemp. stabile Me₂SiF-CK(SiMe_3)₂ reagiert in Et₂O unter$ $Normalbedingungen nicht mit <math>tBu_3SiN_3$. Entsprechendes gilt für die auf analogem Wege aus Me₂SiF-CBr(SiMe_3)₂ und $tBu_3SiNa \cdot n$ THF erhältliche Natriumverbindung Me₂SiF-CNa(SiMe_3)₂ · nTHF [¹H-NMR (Et₂O): $\delta = 0.013$ (breit, 2 SiMe₃), 0.171 (d, $J_{HF} = 6.7$ Hz, SiMe₂), 1.25 + 3.17 (jeweils m, THF)].

Thermolysen von **3a**, **4a**: Thermolyse (5 h) von 2.0 mmol **3a** bzw. **4a** in 5 ml C₆H₆ bei 100 °C im abgeschlossenen, evakuierten Bombenrohr führt – laut ¹H-NMR-Spektrum – quantitativ zu {[tert-Butyl(trimethylsilyl)amino]dimethylsilyl}(trimethylsilyl)diazomethan (**5a**; Gl. (3): E = Si, R = tBu) bzw. in 95proz. Ausbeute zu {[tert-Butyl(trimethylsilyl)amino]dimethylgermyl}(trimethylsilyl)diazomethan (**6a**; Gl. (3): E = Ge, R = tBu). Isolierung durch fraktionierende Destillation bei 60 bzw. 70 °C im Hochvakuum. Ausb. 95 bzw. 90%. Anmerkung: Die Thermolyse von **4a** führt in 5proz. Ausbeute zu einem strukturell noch ungeklärten Produkt. – ¹H-NMR (C₆H₆): δ = 0.189 (s, 2 SiMe₃), 0.217 (s, GeMe₂), 1.25 (s, tBu).

5a: Gelbgrüne Flüssigkeit, Sdp. 60 °C/Hochvakuum. – ¹H-NMR (Et₂O): $\delta = 0.178$ (s, CSiMe₃), 0.314 (s, NSiMe₃), 0.414 (s, SiMe₂), 1.41 (s, tBu). – (C₆H₆): $\delta = 0.130$ (s, CSiMe₃), 0.341 (s, NSiMe₃), 0.384 (s, SiMe₂), 1.33 (s, tBu). – IR (Film): 2045 cm⁻¹ (v_{as}CN₂). – Analyse: Tab. 2. – **6a**: Gelbgrüne Flüssigkeit, Sdp. 74 °C/Ölpumpenvak. – ¹H-NMR (Et₂O): $\delta = 0.168$ (s, CSiMe₃), 0.264 (s, NSiMe₃), 0.654 (s, GeMe₂), 1.36 (s, tBu). - (C₆H₆): $\delta = 0.119$ (s, CSiMe₃), 0.358 (s, NSiMe₃), 0.561 (s, GeMe₂), 1.29 (s, tBu). - IR (Film): 2170 cm⁻¹ (v_{as}CN₂). - Analyse: Tab. 2.

Thermolyse von 3b (gemeinsam mit G. Preiner): Beim Erwärmen einer auf - 78°C gekühlten Lösung von 2.0 mmol 3b in 5 ml Et₂O auf Raumtemp. zersetzt sich 3b - laut ¹H-NMR-Spektrum - zu 50% unter Isomerisierung in {[Bis(trimethylsilyl)amino]dimethyl $silvl{(trimethylsilyl)}diazomethan$ (5b; Gl. 3: E = Si, R = SiMe₃) und zu 50% unter [2 + 3]-Cycloreversion in Bis(trimethylsilyl)diazomethan sowie Folgeprodukte des Silanimins Me₂Si = NSiMe₃, nämlich 27% 2,2,4,4-Tetramethyl-1,3-bis(trimethylsilyl)-1,3-diaza-2,4-disilacyclobutan (7b; Gl. 3: $E = Si, R = SiMe_3$) und 23% Silaniminpolymere [breites ¹H-NMR-Signal (Et₂O) bei $\delta = 0.078$; vgl. hierzu Thermolyse von 4b]. Die fraktionierende Destillation liefert bei 64°C/25 mbar (Me₃Si)₂CN₂ (Charakterisierung: Lit.¹⁵), bis 74°C/Ölpumpenvak. 5b und 7b (hieraus 7b durch mehrmaliges Umkristallisieren aus Et₂O bei - 78 °C; Charakterisierung: Lit.¹⁵), bei 74°C/Ölpumpenvak. 5b (Charakterisierung: Lit.¹⁵). – Anmerkungen: 1) Beim Erwärmen gekühlter Lösungen von 3b in Toluol bzw. Tetrahydrofuran (THF) auf Raumtemp. zersetzt sich 3b unter Isomerisierung/Cycloreversion zu ca. 50/50% bzw. 35/65%; unter den Folgeprodukten des in THF gebildeten Silanimins ist der Anteil an 7b fast quantitativ. -2) Die Thermolyse von 3b in Et₂O bei 80 bzw. 160°C erfolgt unter Isomerisierung/Cycloreversion zu ca. 25/75% bzw. 10/90%. Unter den Folgeprodukten des gebildeten Silanimins ist der Anteil an 7b gering (die Bildung von 3b erfolgte hierbei durch Thermolyse der Silaethen-Quelle $Me_2Si = C(SiMe_3)_2$ \cdot Ph₂C = NSiMe₃¹²⁾ in Anwesenheit einer äquimolaren Menge Me_3SiN_3 . - 3) Das durch Cycloreversion von **3b** gebildete (di- und polymerisierende) $Me_2Si = NSiMe_3$ läßt sich mit Me_3SiN_3 quantitativ abfangen (vgl. Thermolyse von 3b in Anwesenheit von Me₃SiN₃, unten).

Thermolyse von 4b

a) Erwärmen (2 h) von 0.50 mmol 4b in 1.5 ml Tetrahydrofuran auf 70 °C führt – laut ¹H-NMR-Spektren – unter quantitativer [2 + 3]-Cycloreversion zu Bis(trimethylsilyl)diazomethan¹⁵⁾ sowie Folgeprodukten des Germanimins Me₂Ge = NSiMe₃, nämlich 84% 2,2,4,4-Tetramethyl-1,3-bis(trimethylsilyl)-1,3-diaza-2,4-digermacyclobutan (8b; Gl. 3: E = Ge, R = SiMe₃) sowie 16% (THF-lösliche) Germanimin-Polymere (s. unten). Die fraktionierende Destillation liefert bei 50°C im Hochvak. 8b, das zur Reinigung aus Pentan umkristallisiert wird: Farblose Kristalle, Schmp. 41°C, Sdp. 40°C/ Hochvak. – ¹H-NMR (Et₂O): $\delta = -0.036$ (s, 2 SiMe₃), 0.534 (s, 2 GeMe₂). – (C₆H₆): $\delta = 0.087$ (s, 2 SiMe₃), 0.510 (s, 2 GeMe₂). – Analyse: Tab. 2.

b) Beim Erwärmen (2 h) von 188 mg (0.50 mmol) **4b** in 1.5 ml Diethylether (A), Benzol (B) bzw. Pentan (C) auf 70°C im abgeschlossenen, evakuierten Bombenrohr bildet sich unlösliches (Me₂GeNSiMe₃)_{n+1} · (Me₃Si)₂CN₂ (10); die Reaktionslösungen enthalten neben (Me₃Si)₂CN₂¹⁵) die Verbindungen **4g** und **8b** (A) bzw. **4g** (B, C) (Charakterisierung von **10**, **4g**, **8b** vgl. Anmerkungen bzw. Tab. 1 bzw. oben). Laut Auswaage von **10** [21 mg (A), 50 mg (B), 55 mg (C)] sowie ¹H-NMR-Spektren der Reaktionslösungen betragen die zu **10**, **4g** und **8b** führenden Umsätze (Gl. 5) 23/29/48% (A), 53/0/47% (B), 58/0/42% (C) (das in **10** enthaltene (Me₃Si)₂CN₂ blieb bei der Umsatzbestimmung unberücksichtigt).

Anmerkungen: 1) Nach Erhitzen einer Suspension von 10 in C₆H₆ auf 160 °C (3 d) enthält das Lösungsmittel – laut ¹H-NMR – Spuren von (Me₃Si)₂CN₂. Es verbleibt unlösliches (Me₂GeNSiMe₃)_{n+1} (11). – Analyse: Tab. 2. – 2) Die Thermolyse von 4b in Ab- oder Anwesenheit von 8b (Solvens: Benzol) führt zur gleichen Produktverteilung. 8b wird somit nicht von Me₂Ge= NSiMe₃ angegriffen.

Thermolysen von 3c, 3d: Man erwärmt eine auf - 78°C gekühlte etherische Lösung von 3.0 mmol 3c bzw. 3d (erzeugt aus je 3.0 mmol BuLi/Hexan, Me₂SiBr – CBr(SiMe₃)₂ und $tBuMe_2SiN_3$ (A) bzw. tBu_2MeSiN_3 (B) in 15 ml Et₂O bei -78 °C) auf Raumtemperatur. Laut ¹H-NMR bilden sich hierbei im Falle A 45% {[(tert-Butyldimethylsilyl)(trimethylsilyl)amino]dimethylsilyl}(trimethylsilvl)diazomethan (5c; Gl. 3: E = Si, $R = tBuMe_2Si$) sowie 55% 1,3-Bis(tert-butyldimethylsilyl)-2,2,4,4-tetramethyl-1,3-diaza-2,4disilacyclobutan (7c; Gl. 3: E = Si, $R = tBuMe_2Si$) neben einer entsprechenden Menge (Me₃Si)₂CN₂, im Falle B 100% 1,3-Bis(ditert-butylmethylsilyl)-2,2,4,4-tetramethyl-1,3-diaza-2,4-disilacyclobutan (7d; Gl. 3: E = Si, R = tBu_2MeSi). Man entfernt Et₂O im Ölpumpenvak., löst den Rückstand in 15 ml Pentan, frittet die Pentanlösung ab und destilliert dann bis 40 °C/Ölpumpenvak. Pentan und gebildetes (Me₃Si)₂CN₂¹⁵⁾ ab. Umkristallisation des Rückstandes aus Et₂O liefert 0.33 mmol (22%) 7c bzw. 0.87 mmol (58%) 7d. Die fraktionierende Destillation der Mutterlauge der 7c-Gewinnung ergibt bei 89°C im Hochvak. 0.34 mmol (16%) 5c. Anmerkung: Beim Erwärmen einer gekühlten Lösung von 3c in Toluol auf Raumtemp. bilden sich ebenfalls 45% 5c und 55% 7c.

5c: Grüngelbes Öl, Sdp. 89 °C/Hochvak. – ¹H-NMR (Et₂O): $\delta = 0.175$ (s, CSiMe₃), 0.271 (s, NSiMe₂), 0.309 (s, NSiMe₃), 0.393 (s, CSiMe₂), 0.954 (s, tBu). – (C₆H₆): $\delta = 0.106$ (s, SiMe₃), 0.312 (s, NSiMe₂), 0.347 (s, NSiMe₃), 0.369 (s, CSiMe₂), 0.968 (s, tBu). – IR (Film): 2050 cm⁻¹ (v_{as}CN₂). – Analyse: Tab. 2. – 7c: Farblose Kristalle, Schmp. 88 °C. – ¹H-NMR (Et₂O): $\delta = 0.017$ (s, 2 SiMe₂tBu), 0.341 (s, 2 SiMe₂), 0.887 (s, 2 tBu). – (C₆H₆): $\delta = 0.046$ (s, 2 SiMe₂tBu), 0.363 (s, 2 SiMe₂), 0.939 (s, 2 tBu). – Analyse: Tab. 2. – 7d: Farblose Kristalle, Schmp. 172 °C. – ¹H-NMR (Et₂O): $\delta = 0.094$ (s, 2 SiMe), 0.477 (s, 2 SiMe₂), 1.04 (s, 4 tBu). – (C₆H₆): $\delta = 0.068$ (s, 2 SiMe), 0.491 (s, 2 SiMe₂), 1.04 (s, 4 tBu). – Analyse: Tab. 2.

Thermolysen von 4c, 4d: Thermolyse von 0.30 mmol 4c bzw. 4d in 1.5 ml Et₂O (oder C₆H₆) bei 70°C (2 h) im abgeschlossenen, evakuierten Bombenrohr führt – laut ¹H-NMR – quantitativ zu 1,3-Bis(tert-butyldimethylsilyl)-2,2,4,4-tetramethyl-1,3-diaza-2,4digermacyclobutan (8c; Gl. 3: E = Ge, R = tBuMe₂Si) bzw. 1,3-Bis(di-tert-butylmethylsilyl)-2,2,4,4-tetramethyl-1,3-diaza-2,4digermacyclobutan (8d; Gl. 3: E = Ge, R = tBu₂MeSi) neben (Me₃Si)₂CN₂. Umkristallisation des nach Abdestillieren von Et₂O und (Me₃Si)₂CN₂¹⁵) (bis 40°C/Ölpumpenvak.) verbleibenden Rückstandes aus Pentan bei -78°C liefert 8c bzw. 8d.

8c: Farblose Kristalle, Schmp. 52 °C. - ¹H-NMR (Et₂O): $\delta = -0.050$ (s, 2 Si Me_2tBu), 0.609 (s, 2 GeMe₂), 0.914 (s, 2 tBu). - (C₆H₆): $\delta = 0.017$ (s, 2 Si Me_2tBu), 0.578 (s, 2 GeMe₂), 0.982 (s, 2 tBu). - Analyse: Tab. 2. - 8d: Farblose Kristalle, Schmp. 142 °C. - ¹H-NMR (Et₂O): $\delta = -0.030$ (s, 2 SiMe), 0.720 (s, 2 GeMe₂), 0.992 (s, 4 tBu). - (C₆H₆): $\delta = -0.041$ (s, 2 SiMe), 0.689 (s, 2 GeMe₂), 1.05 (s, 4 tBu). - Analyse: Tab. 2.

Thermolyse von 3e: Die Bildung von 3e aus $Me_2Si = C(SiMe_3)_2$ [erzeugt durch Zutropfen von BuLi/Hexan zu $Me_2SiBr - CBr$ - $(SiMe_3)_2$ in Et_2O] und tBu_3SiN_3 erfolgt bei -30 °C langsamer als der Zerfall von 3e (vgl. Darstellung von 3e). Letzterer führt offensichtlich ausschließlich unter ($Me_3Si)_2CN_2$ -Eliminierung zum Silanimin $Me_2Si = NSitBu_3$, welches unter den Reaktionsbedingungen mit Edukten (z. B. tBu_3SiN_3)²⁵⁾ reagiert. In Abwesenheit solcher Edukte würde das Silanimin unter Bildung von 2,2,4,4-Tetramethyl-1,3-bis(tri-tert-butylsilyl)-1,3-diaza-2,4-disilacyclobutan (7e; Gl. 3: $E = Si, R = SitBu_3$; Charakterisierung: Lit.²⁵⁾ dimerisieren. Dies folgt aus der Thermolyse des tBu_3SiN_3 -Addukts²⁵⁾ sowie Et₂O-Addukts³⁸⁾ von $Me_2Si = NSitBu_3$.

Thermolyse von 4e: Bezüglich dieser Thermolyse vgl. Lit.¹³ [Bildung von (Me₃Si)₂CN₂ und 2,2,4,4-Tetramethyl-1,3-bis(tri-tertbutylsilyl)-1,3-diaza-2,4-digermacyclobutan (8e; Gl. 3: E = Ge, $R = SitBu_3$; Charakterisierung: Lit.²⁵)].

Thermolyse von 3f: Man erwärmt eine auf -78 °C gekühlte etherische Lösung von 9.8 mmol 3f (erzeugt aus je 9.8 mmol BuLi/ Hexan, Me₂SiBr-CBr(SiMe₃)₂, Ph₃SiN₃ in 100 ml Et₂O bei -78 °C). Laut ¹H-NMR bilden sich um -70 °C 75% {*Dimethyl-[(trimethylsilyl)(triphenylsilyl)amino]silyl*}(trimethylsilyl)diazomethan (5f; Gl. 3: E = Si, R = SiPh₃) sowie 25% (Me₃Si)₂CN₂¹⁵) und strukturell ungeklärte Folgeprodukte des Silanimins Me₂Si = NSiPh₃ (breite ¹H-NMR-Signale in Et₂O z. B. bei $\delta = 0.071$ und 0.211; s. Thermolyse von 4f). Man ersetzt das Solvens durch Pentan, frittet die Pentanlösung ab und erhält nach Abkühlen auf -78 °C farbloses, kristallines 5f, Schmp. 105 °C. - ¹H-NMR (Et₂O): $\delta = 0.053$ (s, CSiMe₃), 0.100 (s, NSiMe₃), 0.143 (s, SiMe₂). $- (C_6H_6)$: $\delta = 0.020$ (s, CSiMe₃), 0.247 (s, NSiMe₃), 0.263 (s, SiMe₂). - Analyse: Tab. 2.

Thermolyse von 4f: Thermolyse (3 h) von 0.20 mmol 4f in 1.5 ml Tetrahydrofuran (A), Diethylether (B) bzw. Benzol (C) bei 5 °C oder in 1 ml Benzol (D) bzw. Pentan (E) bei 25 °C führt – laut ¹H-NMR – zu (Me₃Si)₂CN₂ sowie 8f, 8m, 8n (Gl. 8) in Ausbeuten von 0/0/ 100% (A, B), 56/24/20% (C), 92/0/8% (D), 100/0/0% (E). Nach Entfernen von Lösungsmittel und (Me₃Si)₂CN₂¹⁵⁾ bis 40 °C/Ölpumpenvak. verbleibt 8f (A, B) bzw. 8n (E). 8m wurde nicht isoliert [¹H-NMR (Et₂O): $\delta = 0.114$ (s, GeMe₂), 0.263 (s, GeMe₂)].

2,2,4,4-Tetramethyl-1,3-bis(triphenylsilyl)-1,3-diaza-2,4-digermacyclobutan (**8f**; Gl. 3: E = Ge, R = SiPh₃), farblose Kristalle, Schmp. 207°C. - ¹H-NMR (Et₂O): $\delta = 0.172$ (s, 2 GeMe₂), 7.00 + 7.39 (m, 6 Ph). - (C₆H₆): $\delta = 0.158$ (s, 2 GeMe₂), 7.08 + 7.79 (m, 6 Ph). - Analyse: Tab. 2. - 1,3-Bis(dimethylphenylgermyl)-2,2,4,4-tetraphenyl-1,3-diaza-2,4-disilacyclobutan (**8n**; Gl. 8), farblose Kristalle, Schmp. 241°C. - ¹H-NMR (Et₂O): $\delta = 0.328$ (s, 2 GeMe₂), 7.00 + 7.57 (m, 6 Ph). - (C₆H₆): $\delta = 0.320$ (s, 2 GeMe₂), 7.11 + 7.76 (m, 6 Ph). - Analyse: Tab. 2.

Thermolyse von 3g: Beim Erwärmen einer auf - 78°C gekühlten etherischen Lösung von 19.2 mmol 3g [erzeugt aus je 19.2 mmol BuLi/Hexan, $Me_2SiBr - CBr(SiMe_3)_2$ und $(Me_3Si)_2NMe_2SiN_3$ in 150 ml Et₂O bei -78 °C] auf Raumtemp. zersetzt sich 3g – laut ¹H-NMR – zu 30% unter Isomerisierung in {{{[Bis(trimethylsilyl)amino]dimethylsilyl}(trimethylsilyl)amino}dimethylsilyl}(trimethylsilyl)diazomethan (5g; Gl. 3: $E = Si, R = SiMe_2N$ - $(SiMe_3)_2$ und zu 70% unter [2 + 3]-Cycloreversion in $(Me_3Si)_2CN_2$ sowie Folgeprodukte des Silanimins $Me_2Si = NSiMe_2N(SiMe_3)_2$, nämlich 59% 1,3-Bis {[bis(trimethylsilyl)amino]dimethylsilyl}-2,2,4,4-tetramethyl-1,3-diaza-2,4-disilacyclobutan [7g; Gl. 3: E = Si, $\mathbf{R} = \mathrm{SiMe}_2\mathrm{N}(\mathrm{SiMe}_3)_2$ und 7% 2,2,4,4-Tetramethyl-1,3-bis(trimethylsilyl)-1,3-diaza-2,4-disilacyclobutan (7b; vgl. 9 in Gl. 4, Si anstelle von Ge im Ring). Man destilliert Et₂O, (Me₃Si)₂CN₂¹⁵⁾ sowie 7b (Charakterisierung durch Vergleich mit authentischer Probe¹⁵) bis 50°C/Hochvak. ab, nimmt den Rückstand in 100 ml Pentan auf, filtriert und zieht dann das Pentan ab. Der verbleibende Rückstand konnte weder durch Umkristallisation aus Pentan oder Diethylether noch durch fraktionierende Hochvakuumdestillation (Produktzersetzung) in die Bestandteile (5g, 7g) aufgetrennt werden. Anmerkung: Beim Erwärmen einer gekühlten Lösung von 3g in Tetrahydrofuran auf Raumtemp. bilden sich – laut ¹H-NMR – 34% 5g, 35% 7g und 65% 7b.

Thermolyse von 4g, 4h

a) Thermolyse (2 h) von 0.20 mmol **4h** in 1.5 ml Benzol (A), Diethylether (B) oder Tetrahydrofuran (C) auf 50 °C führt – laut ¹H-NMR – zu (Me₃Si)₂CN₂ sowie **8h** und **9** (Gl. 4) in Ausbeuten von 100/0% (A), 50/50% (B), 0/100% (C). Nach Entfernen von

Lösungsmittel und $(Me_3Si)_2CN_2^{15}$ bis 40°C/Ölpumpenvak. verbleibt **8h** (A) bzw. **9** (C). Reinigung von **8h** und **9** (nach Sublimation bei 40°C/Hochvak.) durch Umkristallisation aus Pentan bei -78°C.

1,3-Bis {[bis(trimethylsilyl] amino]dimethylsilyl]-2,2,4,4-tetramethyl-1,3-diaza-2,4-digermacyclobutan [8h; Gl. 3: E = Ge, R = SiMe₂N(SiMe₃)₂], farblose Kristalle, Schmp. 156 °C. – ¹H-NMR (Et₂O): δ = 0.200 (s, 2 SiMe₂), 0.238 (s, 4 SiMe₃), 0.634 (s, 2 GeMe₂). – (C₆H₆): δ = 0.277 (s, 2 SiMe₂), 0.314 (s, 4 SiMe₃), 0.648 (s, 2 GeMe₂). – Analyse: Tab. 2. – 2,2,4,4-Tetramethyl-1,3-bis(trimethylsilyl)-1,3-diaza-2-sila-4-germacyclobutan (9, Gl. 4), farblose Kristalle, Schmp. 42 °C. – ¹H-NMR (Et₂O): δ = -0.008 (s, 2 SiMe₃), 0.198 (s, SiMe₂), 0.599 (s, GeMe₂). – (C₆H₆): δ = 0.083 (s, 2 SiMe₃), 0.317 (s, SiMe₂), 0.486 (s, GeMe₂).

b) Thermolyse (2 h) von 0.20 mmol 4g in 1.5 ml Benzol (A), Diethylether (B) oder Tetrahydrofuran (C) auf 90°C führt – laut ¹H-NMR – zu (Me₃Si)₂CN₂, unbekannten Produkten (u. a. wohl 8g; Gl. 3: E = Ge, R = GeMe₂N(SiMe₃)₂] sowie 8b (vgl. 9, Ge anstelle von Si im Ring) in Ausbeuten von 0% (A), 8% (B) bzw. 56% (C; jeweils bezogen auf gebildetes (Me₃Si)₂CN₂¹⁵). – Charakterisierung von 8b: vgl. Thermolyse von 4b.

Thermolyse von 3h: Beim Erwärmen einer etherischen Lösung von 1.3 mmol 3h auf 50°C (26 h) im abgeschlossenen, evakuierten Bombenrohr zersetzt sich 3h - laut ¹H-NMR - unter Isomerisierung sowie [2 + 3]-Cycloreversion. Es bilden sich {Dimethyl/ptolyl(trimethylsilyl)amino]silyl}(trimethylsilyl)diazomethan (5h; Gl. 3: E = Si, R = p-Tol; Ausb. 30%), (Me₃Si)₂CN₂ sowie unbekannte Folgeprodukte des Silanimins Me₂Si = NpTol (letzteres läßt sich mit Me₃SiN₃ abfangen, vgl. Anmerkung 2). Die fraktionierende Destillation des Reaktionsgemischs (Vorfraktion: Et₂O. (Me₃Si)₂CN₂¹⁵⁾) liefert bei 110°C im Hochvak. 5h im Gemisch mit unbekannten Produkten (ca. 15%). Es verbleibt ein viskoser, gelblicher, verbindungsreicher Rückstand. - Anmerkungen: 1) Ein unbekanntes Produkt des Destillats bei 110°C/Hochvak, hat - laut Massenspektrum – die Masse 512 (\triangleq 3h + Me₂Si = NpTol). – 2) Beim Erwärmen von 1.2 mmol 3h in 1 ml (7.6 mmol) Me₃SiN₃ auf 50 °C (22 h) bilden sich – laut ¹H-NMR – 34% 5h und 66% Me₂SiN₃-N(SiMe₃)pTol (Charakterisierung: Lit.²⁶) neben 66% (Me₃Si)₂CN₂. Die fraktionierende Destillation liefert bei 100°C im Hochvak. 5h im Gemisch mit 10% Me₂SiN₃-N(SiMe₃)pTol.

5h: Grüngelbe Flüssigkeit, Sdp. ca. 90 °C/Hochvak. – ¹H-NMR (Et₂O): $\delta = 0.093$ (s, CSiMe₃), 0.130 (s, SiMe₂), 0.130 (s, NSiMe₃), 1.52 (s, CH₃C), 6.90 (m, -CH=). – (C₆H₆): $\delta = 0.108$ (s, CSiMe₃), 0.173 (s, SiMe₂), 0.188 (s, NSiMe₃), 2.08 (s, CH₃C), verdeckt (m, -CH=). – IR (Film): 2046 cm⁻¹ (v_{as}CN₂). – Analyse von **5h** im Gemisch mit 10% Me₂SiN₃ – N(SiMe₃)pTol: Tab. 2.

Thermolyse von 4i, 4k

a) Belassen von 0.20 mmol 4i in 1.5 ml Diethylether oder Benzol bei Raumtemp. (1 h) bzw. Erwärmen von 0.20 mmol 4k in 1.5 ml Tetrahydrofuran auf 50°C (10 min) führen – laut ¹H-NMR – unter (Me₃Si)₂CN₂-Eliminierung quantitativ zu 1,3-Bis(azidodimethylsilyl)-2,2,4,4-tetramethyl-1,3-diaza-2,4-digermacyclobutan (8i; Gl. 3: E = Ge, $R = SiMe_2N_3$) bzw. 1,3-Bis{[4,4-dimethyl-5,5-bis-(trimethylsilyl)-1,2,3-triaza-4-germa-1-cyclopenten-3-yl]dimethylsilyl]-2,2,4,4-tetramethyl-1,3-diaza-2,4-digermacyclobutan (8k; Gl. 7). – Man destilliert das Lösungsmittel und (Me₃Si)₂CN₂ bis 40°C/ Ölpumpenvak. ab und kristallisiert zurückbleibendes 8i, k aus Pentan bei -78°C um.

b) Im Laufe der Thermolyse von **8k** in Tetrahydrofuran bei 70 °C (2 h) bildet sich – laut ¹H-NMR – (Me₃Si)₂CN₂ neben **8l** (vgl. Gl. 7). Nach Abkondensieren von THF verbleibt ein blaßgelbes Öl. **8i**: Farblose Kristalle, Schmp. 42 °C. – ¹H-NMR (Et₂O): $\delta =$ 0.138 (s, 2 SiMe₂), 0.699 (s, 2 GeMe₂). – (C₆H₆): $\delta =$ 0.000 (s, 2 SiMe₂), 0.518 (s, 2 GeMe₂). – **8k**: Farblose Festsubstanz. – ¹H-NMR (Et₂O oder THF): $\delta = 0.080$ (s, 4 SiMe₃), 0.144 (s, 2 SiMe₂), 0.558 (s, 2 GeMe₂), 0.600 (s, 2 GeMe₂). – Analysen: Tab. 2. – **8l**: Blaßgelbes Öl. – ¹H-NMR (THF): Signallagen wie im Falle von **8k**; mit wachsender Thermolysedauer (steigendes *n* in **8l**, vgl. Gl. 7) nimmt die Intensität des Signals für die SiMe₃-Protonen ab, während sich die Signale für die SiMe₂- und GeMe₂-Protonen stark verbreitern.

Kinetik des Zerfalls von 3, 4: Man thermolysiert Lösungen von 3 bzw. 4 in Benzol, Toluol, Diethylether, Tetrahydrofuran (0.2 M) bei den in Tab. 1 angegebenen Temperaturen in evakuierten und abgeschlossenen NMR-Rohren. Die zeitliche Abnahme der Menge an 3, 4 bzw. zeitliche Zunahme der Menge an (Me₃Si)₂CN₂ wird ¹H-NMR-spektroskopisch verfolgt. Geschwindigkeitskonstanten, Halbwertszeiten: Tab. 1.

Thermolyse von **3b** und **13** in Anwesenheit von Me_3SiN_3 (gemeinsam mit G. Preiner und G. Fischer)

a) Beim Erwärmen einer auf -78 °C gekühlten Lösung von 1.0 mmol **3b** und 1.0 mmol Me₃SiN₃ in 5 ml Et₂O auf Raumtemp. bilden sich – laut ¹H-NMR – 50% Diazomethan-Derivat **5b** (Charakterisierung: vgl. Thermolyse von **3b**) sowie 50% Azido-*[bis(trimethylsilyl)amino]dimethylsilan* (14) (Charakterisierung: Lit.¹²) neben 50% (Me₃Si)₂CN₂¹⁵⁾. 5,5-Dimethyl-1,4-bis(trimethyl-silyl)-1,2,3,4-tetraaza-5-sila-2-cyclopenten (15; Charakterisierung: Lit.^{12,25}) entsteht nicht.

b) Nach Thermolyse (20 h) von 1.0 mmol der Silaethen-Quelle $Me_2Si = C(SiMe_3)_2 + Ph_2C = NSiMe_3^{(12)}$ und 10 mmol Me_3SiN_3 in 5 ml Et₂O auf 80°C im abgeschlossenen, evakuierten Bombenrohr enthält die Reaktionslösung - laut ¹H-NMR - 35% unzersetzte Silaethen-Quelle sowie 65% $Ph_2C = NSiMe_3^{12}$ neben 65% Folgeprodukten des intermediär aus $Me_2Si = C(SiMe_3)_2$ und Me_3SiN_3 gebildeten Siladihydrotriazols 3b, nämlich 20% 5b (s. oben) sowie 36% 14 (s. oben) und ca. 9% 15 (s. oben) neben 45% (Me₃Si)₂CN₂¹⁵). Anmerkungen: 1) 15 zersetzt sich thermisch in 14; der Übergang 15 \rightarrow 14 erfolgt aber bei 80 °C noch sehr langsam²⁵⁾. Um den Anteil der Zersetzung an 15 möglichst klein zu halten, wurde die oben beschriebene Thermolyse nach 65proz. Umsatz abgebrochen. 2) Die Thermolyse von 1.0 mmol $Me_2Si = C(SiMe_3)_2 \cdot Ph_2C = NSiMe_3$ und 2.0 mmol Me₃SiN₃ in 5 ml Et₂O bei 80°C (3 d) führt außer zu $Ph_2C = NSiMe_3$ und $(Me_3Si)_2CN_2$ zu 17% 5b, 76% 14, 7% 15. Abnehmendes Molverhältnis von Azid zu Silaethen-Quelle sowie Verlängerung der Reaktionszeit bedingen somit eine Ausbeuteabnahme der Isomerisierung von 3b (Me₃SiN₃-Katalyse?) sowie der Bildung von 15 (Thermolyse von 15?; Reaktion von 15 mit einem Reaktionspartner?).

c) Die Thermolyse von 0.3 mmol 13 in 0.4 ml (3 mmol) Me_3SiN_3 bei 80 °C (15 h) im abgeschlossenen, evakuierten Bombenrohr führt – laut ¹H-NMR – unter Isomerisierung von 13 zu 34% tintenblauem (Me_3Si)₂C=NSiMe_2N(SiMe_3)₂ (Charakterisierung: Lit.¹⁵) sowie unter Insertion (Gl. 9c) und [2 + 3]-Cycloaddition (Gl. 9d) des aus 13 durch [2 + 2]-Cycloreversion (Gl. 9b) erzeugbaren Silanimins Me_2Si=NSiMe_3 zu ca. 55% 14¹² und 11% 15^{12,25)} neben tintenblauem (Me_3Si)₂C=NSiMe_3 (Charakterisierung: Lit.¹⁵).

CAS-Registry-Nummern

1 b: 66239-89-2 / 1c: 108149-06-0 / 1d: 108149-07-1 / 1e: 108149-08-2 / 1f: 108149-09-3 / 1g: 108149-11-7 / 1h: 108149-10-6 / 2b: 103457-99-4 / 2c: 103458-00-0 / 2d: 103458-01-1 / 2e: 103458-02-2 / 2f: 108149-12-8 / 2g: 108149-15-1 / 2h: 108149-16-2 / 2i: 108149-13-9 / 2k: 108149-149-0 / 3a: 108148-83-0 / 3b: 66239-87-0 / 3c: 108148-59-0 / 3d: 108148-60-3 / 3e: 108148-84-1 / 3f: 108148-61-4 / 3g: 108148-85-2 / 3h: 108148-86-3 / 4a: 103457-93-8 / 4b: 103457-94-9 / 4c: 103457-95-0 / 4d: 103457-96-1 / 4e:

103457-97-2 / 4f: 108148-65-8 / 4g: 108148-67-0 / 4h: 108148-66-9 / 4i: 108148-87-4 / 4k: 108148-88-5 / 5a: 108148-89-6 / 5b: 66239-85-8 / 5c: 108148-57-8 / 5f: 108148-62-5 / 5g: 108148-58-9 / 5h: 108148-90-9 / 6a: 103457-98-3 / 7b: 2954-84-9 / 7c: 108148-68-1 / 7e: 100207-18-9 / 7f: 104837-17-4 / 7g: 108148-91-0 / 8b: 108148-74-9 / 8c: 108148-75-0 / 8d: 108148-76-1 / 8e: 108148-77-2 / 8f: 108148-92-1 / 8g: 108148-93-2 / 8h: 108148-78-3 / **8i**: 108148-94-3 / **8k**: 108148-95-4 / **8m**: 108149-03-7 / **8n**: 108149-04-8 / **9**: 89748-29-8 / **10** (n = 2): 108149-02-6 / **11** (n = 2): 108148-96-5 / 13: 62139-58-6 / 14: 66239-86-9 / 15: 66239- $\begin{array}{l} 88-1 \ / \ Me_2 SiBrCBr(SiMe_3)_2: \ 62139-74-6 \ / \ Me_2 GeBrCBr(SiMe_3)_2: \ 103349-20-8 \ / \ tBuN_3: \ 13686-33-4 \ / \ Me_3 SiN_3: \ 4648-54-8 \ / \ tBuMe_2- \ Me_3 SiN_3: \ 4648-54-8 \ / \ tBuMe_2- \ Me_3 SiN_3: \ 4648-54-8 \ / \ tBuMe_2- \ Me_3 SiN_3: \ 4648-54-8 \ / \ tBuMe_2- \ Me_3 SiN_3: \$ SiN₃: 58434-70-1 / tBu₂MeSiN₃: 103457-88-1 / Ph₃SiN₃: 5599--]: 108148-98-7 / (Me₃Si)₃CLi: 28830-22-0 / (Me₃Si)₄C: (SiMe₃)₂-1066-64-4 / Me2SiFCBr(SiMe3)2: 78907-38-7 / Me2SiFCK(SiMe3)2: 108149-00-4 / Me2SiFCNa(SiMe3)2: 108149-01-5 / tBu3SiBr: 56348-25-5 / tBu₃SiK: 108148-99-8 / tBu₃SiNa: 103349-41-3 / Me₂SiN₃-N(SiMe₃)p-Tol: 108149-05-9 / (Me₃Si)₂CN₂: 30006-66-7 / (Me₃Si)₂- $C = NSiMe_2N(SiMe_3)_2$: 80431-50-1

- ¹⁾ 21. Mitteilung über ungesättigte Silicium- und Germaniumverbindungen; zugleich 73. Mitteilung über Verbindungen des Siliciums und seiner Gruppenhomologen. 20. bzw. 72. Mitteilung: N. Wiberg, H. Köpf, *Chem. Ber.* **120** (1987) 653.
- ²⁾ N. Wiberg, G. Preiner, Angew. Chem. **90** (1978) 393; Angew. Chem. Int. Ed. Engl. 17 (1978) 362.
- ³⁾ G. Raabe, J. Michl, Chem. Rev. 85 (1985) 419.
- ⁴⁾ J. Satgé, Adv. Organomet. Chem. 21 (1982) 241.
- ⁵⁾ Vorläufige Mitteilung: N. Wiberg, J. Organomet. Chem. 273 (1984) 141.
- ⁶ N. Wiberg, G. Preiner, O. Schieda, G. Fischer, *Chem. Ber.* **114** (1981) 3505.
- ⁷⁾ N. Wiberg, Ch.-K. Kim, Chem. Ber. 119 (1986) 2966.
- ⁸⁾ N. Wiberg, K. Schurz, G. Reber, G. Müller, J. Chem. Soc., Chem. Commun. 1986, 591.
- ⁹⁾ M. Hesse, U. Klingebiel, Angew. Chem. **98** (1986) 638; Angew. Chem. Int. Ed. Engl. **25** (1986) 649.
- ¹⁰⁾ Die zur Erzeugung von 1, 2 nach Gl. (1 a) bzw. (1 b) benötigten Sila- und Germadihydrotriazole bzw. Sila- und Germadiazetidine werden durch Reaktion von $Me_2E = C(SiMe_3)_2$ [aus $Me_2EX - CLi(SiMe_3)_2$] mit Aziden RN = N = N (vgl. Gl. 2 c) bzw. Azoverbindungen RN = NR gewonnen², wobei Azide mit variablen organischen und anorganischen Resten R leichter zugänglich und bezüglich $Me_2E = C(SiMe_3)_2$ auch viel reaktiver sind als Azoverbindungen.
- ¹¹ Aus sterischen Gründen addiert sich tBu₃SiN₃ an Me₂E = C-(SiMe₃)₂ viel langsamer als tBu₂MeSiN₃. Erzeugt man demgemäß Me₂E = C(SiMe₃)₂ bei -78 °C in Et₂O in Anwesenheit von tBu₃SiN₃, so bildet sich kein [2 + 3]-Cycloaddukt, sondern ausschließlich das Me₂E = C(SiMe₃)₂-Dimere^{6,7}. Bei höheren Reaktionstemperaturen (z. B. -30 °C im Falle E = Si, -15 °C im Falle E = Ge) kann die stark temperaturbegünstigte [2 + 3]-Cycloaddukton mit der Me₂E = C(SiMe₃)₂-Dimereisierung konkurrieren; bei ausreichendem tBu₃SiN₃-Überschuß wird die Dimerisierungsreaktion sogar unterbunden. Allerdings sind die [2 + 3]-Cycloaddukte Me₂E = C(SiMe₃)₂ · tBu₃SiN₃ (3e, 4e) unter den Darstellungsbedingungen bereits instabil; der Zerfall des Addukts 3e erfolgt sogar rascher als dessen Bildung, so daß 3e ¹H-NMR-spektroskopisch nicht sichtbar wird.
- ¹²⁾ N. Wiberg, G. Preiner, G. Wagner, H. Köpf, G. Fischer, Z. Naturforsch., Teil B, 42 (1987) Juli/August.
- ¹³⁾ N. Wiberg, Ch.-K. Kim, Chem. Ber. 119 (1986) 2980.
- ¹⁴ Me₃SiN₃ ist gegenüber Me₂Si = C(SiMe₃)₂ ca. 1000mal reaktiver als 2,3-Dimethyl-1,3-butadien, welches aber seinerseits Me₂Si = C(SiMe₃)₂ bei -78 °C noch abfängt⁶.
 ¹⁵ N. Wiberg, G. Preiner, O. Schieda, *Chem. Ber.* **114** (1981) 3518.
- ¹⁵⁾ N. Wiberg, G. Preiner, O. Schieda, *Chem. Ber.* **114** (1981) 3518. ¹⁶⁾ UV (Cyclohexan): λ_{max} (ε) von **4a** = 258 nm (38800), **4b** = 251 (39800), **4c** = 283 (39500), **4d** = 253 (39500), **4g** = 253 (39500), **4h** = 253 (39500).
- ¹⁷⁾ J. S. Thayer, R. West, Adv. Organomet. Chem. 5 (1967) 169; R. M. Pike, N. Sobinsky, J. Organomet. Chem. 253 (1983) 183.
- ¹⁸⁾ N. Wiberg, G. Wagner, G. Reber, J. Riede, G. Müller, Organometallics 6 (1987) 35.

- ^{19a)} Die Erhöhung der Cycloreversionstendenz von 3b beim Über-gang von Et₂O zu THF als Reaktionsmedium beruht möglicherweise auf der in Richtung $Et_2O < THF$ wachsenden Tendenz zur Donatoradduktbildung der Lösungsmittelmoleküle mit $Me_2Si = NSiMe_3^{18,20,26}$ und der damit verbundenen Absenkung der Cycloreversionsaktivierungsenergie in gleicher Richtung [vgl. hierzu auch die Geschwindigkeitserhöhung der Me₂Si = C(SiMe₃)₂-Bildung aus dem Addukt Me₂Si = C(SiMe₃)₂. $Ph_2C = NSiMe_3$ nach Ersatz des Mediums Et₂O durch THF¹²]. Mit zunehmender Sperrigkeit von R in 3 nimmt der Lösungsmitteleinfluß auf die Cycloreversionstendenz von 3 wohl rasch ab.
- ²⁰⁾ N. Wiberg, H. Köpf, J. Organomet. Chem. 315 (1986) 9.
- ²¹⁾ Das Produkt **3g** bzw. **4g** einer einfachen Insertion von $Me_2E = NSiMe_3$ (E = Si, Ge) in die $NSiMe_3$ -Bindung von **3b** bzw. 4b ist neben Produkten vielfacher Imin-Insertionen nur dann isolierbar, wenn die Bildung von 3g bzw. 4g mindestens vergleichbar rasch wie deren Weiterreaktion erfolgt.
- ²²⁾ 3g zersetzt sich rascher als 3b unter (Me₃Si)₂CN₂-Eliminierung,
 4g langsamer als 4b (vgl. Tab. 1; Entsprechendes gilt wohl für die $Me_2E = NSiMe_3$ -Insertionsfolgeprodukte von 3g, 4g). Folglich ist im Falle der 4b-Thermolyse eine vielfache Insertion von $Me_2Ge = NSiMe_3$ möglich, während Insertionen von $Me_2Si = NSiMe_3$ im Falle der **3b**-Thermolyse – falls sie überhaupt erfolgen - nach wenigen Insertionsschritten wegen Zerfalls der Insertionsprodukte zum Stillstand kommen müssen.
- ²³⁾ Möglicherweise bildet sich allerdings 8i auf dem Wege einer Insertion von $Me_2Ge = NSiMe_2N_3$ (aus 4i) in die NSi-Bindung von 4i (vgl. Gl. 5); das Insertionsprodukt könnte dann unter [2 + 3]-Cycloreversion in (Me₃Si)₂CN₂ und – seinerseits in 8i übergehendes (vgl. Gl. 4) – Germanimin Me₂Ge=N–GeMe₂-N(SiMe₂N₃)₂ zerfallen.

- ²⁴⁾ Wie aus Tab. 1 hervorgeht, wächst die Zersetzlichkeit der Dihydrotriazole 3 bzw. 4 in Richtung $\mathbf{b} < \mathbf{c} \approx \mathbf{d} < \mathbf{e}$ an. Verwunderlich ist insbesondere die hohe Zersetzlichkeit von 3f, 3g, 4f, 4h; auch ist die Stabilitätsreihenfolge für 3b - e eine andere als für 4b-e (Tab. 1). Der Lösungsmitteleinfluß auf die Thermolysegeschwindigkeit ist gering. ²⁵⁾ N. Wiberg, P. Karampatses, Ch.-K. Kim, *Chem. Ber.* **120**, (1987)
- 1213, nachstehend.
- ²⁶⁰ N. Wiberg, G. Preiner, P. Karampatses, Ch.-K. Kim, K. Schurz, Chem. Ber. 120 (1987), im Druck.
- Die Erhöhung des Verhältnisses der Ausbeuten von 15 und 14 mit der Reaktionstemperatur wäre mit einer zweistufigen Bildung von 14 und einstufigen Bildung von 15 vereinbar (konzertiert verlausende Reaktionen sind besonders temperaturbegünstigt)
- 28) N. Wiberg, G. Preiner, O. Schieda, Chem. Ber. 114 (1981) 2087.
- ²⁹⁾ L. W. Breed, R. L. Elliot, J. Organomet. Chem. 11 (1968) 447.
- ³⁰⁾ N. Wiberg, B. Neruda, Chem. Ber. 99 (1966) 740.
- ³¹⁾ D. R. Parker, L. H. Sommer, J. Am. Chem. Soc. 98 (1976) 618.
 ³²⁾ M. Weidenbruch, H. Pesel, Z. Naturforsch., Teil B, 33 (1978) 1465; P. M. Nowakowski, L. H. Sommer, J. Organomet. Chem. 178 (1979) 95.
- ³³⁾ U. Wannagat, H. Niederprüm, Z. Anorg. Allg. Chem. 308 (1961) 336.
- ³⁴⁾ Org. Synth., Vol. 3 (1955) 710.
- ³⁵⁾ W. Sundermayer, *Chem. Ber.* 96 (1963) 1293.
 ³⁶⁾ D. Seyferth, L. J. L. Lefferts jr., E. M. Hamson, J. Organomet. Chem. 24 (1970) 647.
- 37) N. Wiberg, G. Fischer, P. Karampatses, Angew. Chem. 96 (1984) 58; Angew. Chem. Int. Ed. Engl. 23 (1984) 59.
- ³⁸⁾ N. Wiberg, K. Schurz, Veröffentlichung in Vorbereitung.

[38/87]